Read the Online Textbook for the full content.
Section 1.5 Summation Notation and Generalizations
Subsection 1.5.1 Sums
- Most arithmetic operations, like addition, multiplication are binary operations, taking two operands, i.e. numbers.
- Adding more than two numbers together: \(a_1 + a_2 + a_3 + a_4\) is the same as repeating addition with two operands on partial sums: \(((a_1 + a_2) + a_3) + a_4\).
- We group operations between ( and ) that must have precedence - must be computed first.
- Addition and multiplication are associative, for example: \((a_1 + a_2) + a_3 = a_1 + (a_2 + a_3)\). Subtraction, division, modulo (i.e. remainder) are not associative.
- Summation notation: \( \sum_{k=1}^4 a_k = a_1 + a_2 + a_3 + a_4\)
- In general, we write a finite series as:
\( a_1+a_2+a_3 +\dots +a_n=\sum_{k=1}^{n} a_k\).
The variable \(k\) is referred to as the index, or the index of summation.
The expression \(a_k\) is the general term of the series. It defines the numbers that are being added together in the series.
The value of \(k\) below the summation symbol is the initial index and the value above the summation symbol is the terminal index.
It is understood that the series is a sum of the general terms where the index start with the initial index and increases by one up to and including the terminal index.
Example 1.5.1. Some finite series.
\(\displaystyle \sum_{i=1}^4 a_i= a_1+ a_2+a_3+a_4\)
\(\displaystyle \sum_{k=0}^5 b_k=b_0+b_1+b_2+b_3+b_4+b_5\)
\(\displaystyle \sum_{i=-2}^2 c_i=c_{-2}+c_{-1}+c_0+c_1+c_2\)
Example 1.5.2. More finite series.
If the general terms in a series are more specific, the sum can often be simplified. For example,
\(\displaystyle \sum_{i=1}^4 i^2=1^2+2^2+3^2+4^2=30\)
- \begin{equation*} \begin{split} \sum_{i=1}^5 (2i-1)&=(2\cdot 1-1)+(2\cdot 2-1)+(2\cdot 3-1)+(2\cdot 4-1)+(2\cdot 5-1)\\ & =1+3+5+7+9\\ & =25\\ \end{split}\text{.} \end{equation*}
Subsection 1.5.2 Generalizations
Summation notation can be generalized to many mathematical operations, for example, \(A_1\cap A_2\cap A_3\cap A_4=\underset{i=1}{\overset{4}{\cap }}A_i\)
Definition 1.5.3. Generalized Set Operations.
Let \(A_1, A_2, \ldots , A_n\) be sets. Then:
\(\displaystyle A_1\cap A_2\cap \cdots \cap A_n=\underset{i=1}{\overset{n}{\cap }}A_i\)
\(\displaystyle A_1\cup A_2\cup \cdots \cup A_n=\underset{i=1}{\overset{n}{\cup }}A_i\)
\(\displaystyle A_1\times A_2\times \cdots \times A_n=\underset{i=1}{\overset{n}{\times }}A_i\)
\(\displaystyle A_1\oplus A_2\oplus \cdots \oplus A_n=\underset{i=1}{\overset{n}{\oplus }}A_i\)
Example 1.5.4. Some generalized operations.
If \(A_1 = \{0, 2, 3\}\text{,}\) \(A_2 = \{1, 2, 3, 6\}\text{,}\) and \(A_3 = \{-1, 0, 3, 9\}\text{,}\) then
and
With this notation it is quite easy to write lengthy expressions in a fairly compact form. For example, the statement
becomes
Exercises 1.5.3 Exercises
1.
Calculate the following series:
\(\displaystyle \sum_{i=1}^3 (2 + 3i)\)
\(\displaystyle \sum_{i=-2}^1 i^2\)
\(\sum_{j=0}^n 2^j\text{ }\) for \(n= 1, 2, 3, 4\)
\(\sum_{k=1}^n (2k-1)\) for \(n = 1, 2, 3, 4\)
\(\displaystyle 24\)
\(\displaystyle 6\)
\(\displaystyle 3,7,15,31\)
\(\displaystyle 1,4,9,16\)
2.
Calculate the following series:
\(\sum_{k=1}^3 k^n\) for \(n = 1, 2, 3, 4\)
\(\displaystyle \sum_{i=1}^5 20\)
\(\sum_{j=0}^3 \left(n^j+1\right)\) for \(n = 1, 2, 3,4\)
\(\sum_{k=-n}^n k\) for \(n = 1, 2, 3, 4\)
3.
Express the formula \(\sum_{i=1}^n \frac{1}{i(i+1)}= \frac{n}{n+1}\) without using summation notation.
Verify this formula for \(n=3\text{.}\)
Repeat parts (a) and (b) for \(\sum_{i=1}^n i^3=\frac{n^2(n+1)^2}{4}\)
\(\displaystyle \frac{1}{1 (1+1)}+\frac{1}{2 (2+1)}+\frac{1}{3 (3+1)}+\cdots +\frac{1}{n(n+1)}=\frac{n}{n+1}\)
\(\displaystyle \frac{1}{1(2)}+\frac{1}{2(3)}+\frac{1}{3(4)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}=\frac{3}{4}=\frac{3}{3+1}\)
\(1+2^3+3^3+\cdots +n^3=\left(\frac{1}{4}\right)n^2(n+1)^2\) \(\quad 1+8+27=36 = \left(\frac{1}{4}\right)(3)^2(3+1)^2\)
4.
Verify the following properties for \(n = 3\text{.}\)
\(\displaystyle \sum_{i=1}^n \left(a_i+ b_i\right) =\sum_{i=1}^n a_i +\sum_{i=1}^n b_i\)
\(\displaystyle c\left(\sum_{i=1}^n a_i\right) = \sum_{i=1}^n c a_i\)
5.
Rewrite the following without summation sign for \(n = 3\text{.}\) It is not necessary that you understand or expand the notation \(\left( \begin{array}{c} n \\ k \\ \end{array} \right)\) at this point. \((x + y)^n= \sum_{k=0}^n \left( \begin{array}{c} n \\ k \\ \end{array} \right)x^{n-k}y^k\text{.}\)
\((x+y)^3=\left(\text{}_0^3\right)x^3+\left(\text{}_1^3\right)x^{2}y+\left.(_2^3\right)x y^2+\left(\text{}_3^3\right)y^n\)
6.
Draw the Venn diagram for \(\underset{i=1}{\overset{3}{\cap }}A_i\text{.}\)
Express in “expanded format”: \(A\cup (\underset{i=1}{\overset{n}{\cap }}B_i)= \underset{i=1}{\overset{n}{\cap }}(A \cup B_n)\text{.}\)
7.
For any positive integer \(k\text{,}\) let \(A_k = \{x \in \mathbb{Q}:k-1 < x \leq k\}\) and \(B_k = \{x \in \mathbb{Q}: -k < x < k\}\text{.}\) What are the following sets?
\(\displaystyle \underset{i=1}{\overset{5}{\cup }}A_i\)
\(\displaystyle \underset{i=1}{\overset{5}{\cup }}B_i\)
\(\displaystyle \underset{i=1}{\overset{5}{\cap }}A_i\)
\(\displaystyle \underset{i=1}{\overset{5}{\cap }}B_i\)
\(\displaystyle \{x\in \mathbb{Q}\mid 0 < x \leq 5\}\)
\(\displaystyle \{x\in \mathbb{Q}\mid -5 < x < 5\}=B_5\)
\(\displaystyle \emptyset\)
\(\displaystyle \{x\in \mathbb{Q}\mid -1 < x < 1\}=B_1\)
8.
For any positive integer \(k\text{,}\) let \(A_k = \{x \in \mathbb{Q}:\text0 < x < 1/k\}\) and \(B _k = \{x \in \mathbb{Q}:\,0 < x < k\}\text{.}\) What are the following sets?
\(\displaystyle \underset{i=1}{\overset{\infty }{\cup }}A_i\)
\(\displaystyle \underset{i=1}{\overset{\infty }{\cup }}B_i\)
\(\displaystyle \underset{i=1}{\overset{\infty }{\cap }}A_i\)
\(\displaystyle \underset{i=1}{\overset{\infty }{\cap }}B_i\)
9.
The symbol \(\Pi\) is used for the product of numbers in the same way that \(\Sigma\) is used for sums. For example, \(\prod _{i=1}^5 x_i=x_1 x_2 x_3 x_4 x_5\text{.}\) Evaluate the following:
\(\displaystyle \prod _{i=1}^3 i^2\)
\(\displaystyle \prod _{i=1}^3 (2i+1)\)
\(\displaystyle 36\)
\(\displaystyle 105\)
10.
Evaluate
\(\displaystyle \prod _{k=0}^3 2^k\)
\(\displaystyle \prod _{k=1}^{100} \frac{k}{k+1}\)